Insulin-like growth factor 2 expressed in a novel fetal liver cell population is a growth factor for hematopoietic stem cells.

نویسندگان

  • Cheng Cheng Zhang
  • Harvey F Lodish
چکیده

Hematopoietic stem cells (HSCs) undergo dramatic expansion during fetal liver development, but attempts to expand their numbers ex vivo have failed. We hypothesized that unidentified fetal liver cells produce growth factors that support HSC proliferation. Here we describe a novel population of CD3+ and Ter119- day-15 fetal liver cells that support HSC expansion in culture, as determined by limiting dilution mouse reconstitution analyses. DNA array experiments showed that, among other proteins, insulin-like growth factor 2 (IGF-2) is specifically expressed in fetal liver CD3+ cells but not in several cells that do not support HSCs. Treatment of fetal liver CD3+Ter119- cells with anti-IGF-2 abrogated their HSC supportive activity, suggesting that IGF-2 is the key molecule produced by these cells that stimulates HSC expansion. All mouse fetal liver and adult bone marrow HSCs express receptors for IGF-2. Indeed, when combined with other growth factors, IGF-2 supports a 2-fold expansion of day-15 fetal liver Lin-Sca-1+c-Kit+ long-term (LT)-HSC numbers. Thus, fetal liver CD3+Ter119- cells are a novel stromal population that is capable of supporting HSC expansion, and IGF-2, produced by these cells, is an important growth factor for fetal liver and, as we show, adult bone marrow HSCs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Production and functional characterization of human insulin-like growth factor 1

Insulin-like growth factor 1 (IGF-1) is a polypeptide hormone produced mainly by the liver in response to the endocrine growth hormone (GH) stimulus. This protein is involved in a wide range of cellular functions, including cellular differentiation, transformation, apoptosis suppression, migration and cell-cycle progression and other metabolic processes. In the current study, human heart cDNA w...

متن کامل

Effects of Inflammatory Cytokine Tumor Necrosis Factor-α on Human Mesenchymal Stem Cell Gene Expression: A Mechanism for Liver Regeneration

Introduction  Insulin-like growth factor I (IGF-I) which is produced in abundance in the normal adult liver, is deeply involved in hepatocyte survival, growth, and differentiation during liver development. IGF-I plays the roles via the receptor (IGF-IR) signaling pathway. IGF-IR unlike IGF-I is expressed strongly in the developing liver, but much more weakly in adults. Objective:  We hypothesi...

متن کامل

Expansion of Non-Enriched Cord Blood Stem/Progenitor Cells CD34+ CD38- Using Liver Cells

Many investigators have used xenogeneic, especially murine stromal cells and fetal calf serum to maintain and expand human stem cells. The proliferation and expansion of human hematopoietic stem cells in ex vivo culture were examined with the goal of generating a suitable protocol for expanding hematopoietic stem cells for patient transplantation. Using primary fetal liver cells, we established...

متن کامل

In vitro Induction of Fetal Hemoglobin in Erythroid Cells Derived from CD133 Cells by Transforming Growth Factor-b and Stem Cell Factor

Increased fetal hemoglobin (HbF) in b-globin gene disorders ameliorates the clinical symptoms of the underlying disease. 5-azacytidine, butyrate and hydroxyurea, have been shown to activate g-globin gene expression. It has also been found that hematopoietic growth factors can influence expression of g-globin in erythroid cultures and in animal models. This study was designed to evaluate the in ...

متن کامل

In-vitro Differentiation of Human Umbilical Cord Wharton’s Jelly Mesenchymal Stem Cells to Insulin-Producing Cells

  Background & Objective: Diabetes is a major chronic metabolic disease in the world. Islet transplantation is a way to treat diabetes. Unfortunately, this method is restricted due to graft rejection and lack of donor islets. Mesenchymal Stem Cells (MSCS) have the ability to differentiate into Insulin-Producing Cells (IPCs). In this study, Human Umbilical Mesenchymal Stem Cells (HUMSCS) were in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Blood

دوره 103 7  شماره 

صفحات  -

تاریخ انتشار 2004